
Confire Documentation
Release 0.2.0

Benjamin Bengfort

December 10, 2016

Contents

1 Features 3

2 Setup 5

3 Example Usage 7

4 Next Topics 9

5 About 17

Python Module Index 19

i

ii

Confire Documentation, Release 0.2.0

Confire is a simple but powerful configuration scheme that builds on the configuration parsers of Scapy, elasticsearch,
Django and others. The basic scheme is to have a configuration search path that looks for YAML files in standard
locations. The search path is hierarchical (meaning that system configurations are overloaded by user configurations,
etc). These YAML files are then added to a default, class-based configuration management scheme that allows for
easy development.

Contents 1

Confire Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Features

• Configuration files in YAML

• Hierarchical configuration search

• Class based application defaults

• Settings pulled in from the environment

3

Confire Documentation, Release 0.2.0

4 Chapter 1. Features

CHAPTER 2

Setup

The easiest and usual way to install confire is to use pip:

pip install confire

To install the package from source, download the latests package tarball, unzip in a temporary directory and run the
following command:

python setup.py install

As always, I highly recommend the use of a virtual environment to better manage the software dependencies for your
particular code base.

5

Confire Documentation, Release 0.2.0

6 Chapter 2. Setup

CHAPTER 3

Example Usage

Create a file called “myapp.yaml” and place it in one of the following places:

• /etc/myapp.yaml

• $HOME/.myapp.yaml

• conf/myapp.yaml

Create some configuration values inside the file like so:

Set application environment
debug: True
testing: False

A simple database configuration
database:

name: mydb
host: localhost
port: 5432
user: postgres

In your code, create a file called “config.py” and add the following:

from confire import Configuration
from confire import environ_setting

class DatabaseConfiguration(Configuration):

host = "localhost"
port = 5432
name = "mydb"
user = "postgres"
password = environ_setting("DATABASE_PASSWORD", required=False)

class MyAppConfiguration(Configuration):

CONF_PATHS = [
'/etc/myapp.yaml',
os.path.expanduser('~/.myapp.yaml'),
os.path.abspath('conf/myapp.yaml')

]

debug = False
testing = True
database = DatabaseConfiguration()

7

Confire Documentation, Release 0.2.0

settings = MyAppConfiguration.load()

Now, everywhere in your code that you would like to access these settings values, simply use as follows:

from config import settings

debug = settings.get('DEBUG') or settings['DEBUG']

Voila! A complete configuration system for your application!

8 Chapter 3. Example Usage

CHAPTER 4

Next Topics

Here are a list of topics for more detail about how to use confire in your Python applications.

4.1 Configuring Apps with Confire

Let’s say that you’ve just started a new Python project - you know that this project is going to need access to a Database,
possibly require an API key and API Secret, and it will definitely need some sort of debug mode so that developers
can figure out what’s going on in production. These types of variables shouldn’t be hardcoded into your application,
you’ll want some kind of configuration management system in your app.

So what are your options? Python has a native configuration parser that handles .ini files similar to what you’d see on
Windows machines - it’s called configparser, and while it works well (and even has support for JSON files) - it
is extremely basic. As a developer, you not only have to deal with the .ini syntax, but you also have to look for the
file and load it into the parser. While the parser does handle type conversion, it has no quick ability to add reasonable
defaults. Basically, your configuration ends up being defined by the .ini file - and this is not good, especially if your
users forget to change a particular value or leave one out all together!

If you look at Django, they have their settings in a Python file, and the settings are Python code. This is great because
now you can use any Python type as a setting. There are even reasonable defaults and some fancy import logic helps
get the settings where they need to be. The problem is that you have to import that file, it has to be on your python path
- so no storage of a settings file in /etc or any other reasonable place. It also means that developers have to configure
Django- not just users of the app.

So we want the following things in our configuration:

1. Reasonable lookup locations for config files

2. Configuration type parsing from a text file

3. An API that supports reasonable defaults and in-code usage

4. A text based configuration that is for users not developers

This is where confire comes in. Confire uses YAML as the configuration language of choice. This is a markup format
that has rich types like JSON, but is also very readable. Applications like Elasticsearch, Ruby on Rails, Travis-CI and
others make use of YAML, so it’s probably already familiar to you.

Confire has a hierarchical lookup system that means it looks in the system configuration (/etc in *nix systems), then
in a user specific place, then in a local directory. At each level, the configuration overrides the defaults from the other
levels. Configurations are then supplied to the developer in a friendly, Django-like way.

9

Confire Documentation, Release 0.2.0

4.1.1 Project Setup

In your projects folder, create your app folder, let’s call it “myapp”. Then create the Python project skeleton as you
would normally do, but also include a configuration directory, “conf”.

$ mkdir myapp
$ cd myapp
$ mkdirs bin tests conf docs fixtures myapp
$ touch tests/__init__.py
$ touch myapp/__init__.py
$ touch setup.py
$ cd docs
$ sphinx-quickstart
...
$ cd ..

Hopefull this is very familiar to those who develop on Linux or Mac and set up Python projects regularly. Now,
assuming you’re using Git as well as virtualenv and virtualenv wrapper - let’s get our repository and env going:

$ git init
$ mkvirtualenv -a $(pwd) myapp
(myapp)$ pip install confire
(myapp)$ pip install nose
(myapp)$ pip freeze > requirements.txt

Perfect! You’re now ready to get developing your Python app. Let’s start by getting our configuration going. Create a
file called myapp.yaml in the conf directory. It may be helpful to add this file to your .gitignore so that you
don’t accidentally commit a private variable publically. Also create a file called config.py in your myapp module.

Inside the myapp.yaml file place the following, very simple code.

debug: false
testing: false

And then inside your config.py, place the following code.

import os
from confire import Configuration

class MyAppConfiguration(Configuration):

CONF_PATHS = [
"/etc/myapp.yaml", # System configuration
os.path.expandvars("$HOME/.myapp.yaml"), # User specific configuration
os.path.abspath("conf/myapp.yaml"), # Development configuration

]

debug = True
testing = True

Load settings immediately for import
settings = MyAppConfiguration.load()

if __name__ == "__main__":
print settings

That’s it, you now have a complete configuration system for your app! Let’s walk through this code. Confire provides
a class-based configuration API, meaning that you simply create configuration classes and then defeine your defaults
on them at the class level (kind of like you might use Django class-based views). Configuration classes must all extend
the confire.Configuration base class.

10 Chapter 4. Next Topics

Confire Documentation, Release 0.2.0

Note: All configurations should be lowercase properties! Configurations are case insensitive, but to achieve this, the
__getitem__ method lowercases all accessors!

The CONF_PATHS class variable tells the configuration where to look for YAML files to load. In this case, we
specify three lookups that happen in the order they’re specified - first the system, then the user directory, then the local
directory for development. You’ll notice that if the config file is missing, no exceptions are raised.

4.1.2 Using Configurations in Code

The loaded settings immediately for import means that elsewhere in your code, all you have to do is use the following
to get access to your config:

from myapp.config import settings

if settings.get("DEBUG"):
...

else:
...

Because your API has already specified reasonable defaults, you don’t have to worry about configurations being
missing or unavailable!

A couple notes on using the settings in your code:

1. The settings are not case sensitive, DEBUG is the same as debug. However, all properties should be stored as
lowercase in the configuration subclass.

2. You can access settings like so: settings["mysetting"], however this will raise an exception if the
setting is not available (something that really shouldn’t happen).

3. You can also access the settings through the get method: settings.get("mysetting", "foo"), which
will not raise an exception on a missing setting, but instead return the supplied default or None.

4. You can also access the settings using a dot accessor method: settings.mysetting, which fetches the
properties off the class.

5. Settings can be modified at runtime, but this is not recommended.

As you continue to develop, you can add settings to your config.py as well as your myapp.yaml, your app
development is now much smoother!

4.2 Environment Variables

Sometimes you don’t want your configurations to reside inside of a YAML file, saved on disk, usually when you
have a secret key or a database password. Other times you don’t have access to your server’s disk, but can add
ENVIRONMENTAL VARIABLES as with a hosting service like Heroku.

Confire makes it easy to specify variables that you expect to be in the environment, using the environ_setting
function, which you can import from the main module.

from confire import Configuration, environ_setting

class MyConfiguration(Configuration):

supersecret = environ_setting("SUPER_SECRET", None, required=True)

4.2. Environment Variables 11

Confire Documentation, Release 0.2.0

The function expects as a first argument, the name of the environment variable, usually an all caps, underscore sepa-
rated name. You can also give a default value (in case no variable exists in the environment) as the second argument.

When the environment is initialized (not loaded) it will immediately look in the environment for the setting and store
it as the default. Any settings that are in the YAML search paths will override the environment variable, so make sure
that you leave ENV_VARS out of the YAML configs!

The behavior of the function depends on how it’s called, in terms of using the default and fetching from the environ-
ment:

1. If it is required and the default is None, raise ImproperlyConfigured

2. If it is requried and a default exists, return default

3. If it is not required and default is None, return None

4. If it is not required and default exists, return default

Environmental variables are usually required, hence the exception.

Note also that you can use confire exceptions and warnings in your own code, by importing the
ImproperlyConfigured and MissingConfiguration exception and warning.

4.3 Nested Configurations

Configurations are nestable in order to ensure that developers can create easily modular configurations, for example
database configuations for a staging and production database or per-app settings. Nested configurations will also
be loaded from a single YAML file that expects a similar nesting structure, and the configurations are loaded in a
depth-first manner.

To create a nested configuration, you need a main configuration object that supports the top-level configuration. For
each nested configuration, you simply create new Configuration subclasses and then add them as settings to main
configuration class.

Here is the example for two different databases:

import confire

class DatabaseConfiguration(confire.Configuration):

name = None
host = "localhost"
port = 5432
user = None
pass = None

class MainConfiguration(confire.Configuration):

staging = DatabaseConfiguration()
production = DatabaseConfiguration()

settings = MainConfiguration.load()

In your YAML file, you can configure each database configuration for its specific environment:

staging:
name: "myapp-staging"
host: "localhost"
port: 5432
user: "test-user"

12 Chapter 4. Next Topics

Confire Documentation, Release 0.2.0

pass: "password"
production:

name: "myapp-production"
host: "54.21.35.141"
port: 5432
user: "user"
pass: "password"

Access to the configuration is as follows:

from myapp.config import settings

print settings.staging.host
print settings.production.host

Configurations can be nested to any depth, but it is recommended to keep them fairly shallow, to avoid deep accessor
chains.

4.4 Class Documentation

This page documents the contents of the library.

4.4.1 Confire Module

A simple app configuration scheme using YAML and class based defaults.

confire.get_version()
Returns a string containing the version number

4.4.2 Config Module

Confire class for specifying Confire specific optional items via a YAML configuration file format. The main configu-
ration class provides utilities for loading the configuration from disk and iterating across all the settings. Subclasses
of the Configuration specify defaults that can be updated via the configuration files.

General usage:

from confire.conf import settings mysetting = settings.get(‘mysetting’, default)

You can also get settings via a dictionary like access:

mysetting = settings[’mysetting’]

However, this will raise an exception if the setting is not found.

Note: Keys are CASE insensitive

Note: Settings can be modified directly by settings.mysetting = newsetting however, this is not recommended, and
settings should be fetched via the dictionary-like access.

class confire.config.Configuration
Base configuration class specifies how configurations should be handled and provides helper methods for iterat-
ing through options and configuring the base class.

Subclasses should provide defaults for the various configurations as directly set class level properties. Note,
however, that ANY directive set in a configuration file (whether or not it has a default) will be added to the
configuration.

4.4. Class Documentation 13

Confire Documentation, Release 0.2.0

Example:

class MyConfig(Configuration):

mysetting = True logpath = “/var/log/myapp.log” appname = “MyApp”

The configuration is then loaded via the classmethod load:

settings = MyConfig.load()

Access to properties is done two ways:

settings[’mysetting’] settings.get(‘mysetting’, True)

Note: None settings are not allowed!

configure(conf={})
Allows updating of the configuration via a dictionary of configuration terms or a configuration object.
Generally speaking, this method is utilized to configure the object from a JSON or YAML parsing.

get(key, default=None)
Fetches a key from the configuration without raising a KeyError exception if the key doesn’t exist in the
config, instead it returns the default (None).

classmethod load(klass)
Insantiates the configuration by attempting to load the configuration from YAML files specified by the
CONF_PATH module variable. This should be the main entry point for configuration.

options()
Returns an iterable of sorted option names in order to loop through all the configuration directives specified
in the class.

confire.config.environ_setting(name, default=None, required=True)
Fetch setting from the environment. The bahavior of the setting if it is not in environment is as follows:

1.If it is required and the default is None, raise Exception

2.If it is requried and a default exists, return default

3.If it is not required and default is None, return None

4.If it is not required and default exists, return default

4.4.3 Exceptions

Exceptions hierarchy for Confire

exception confire.exceptions.ConfigurationMissing
Warn the user that an optional configuration is missing.

exception confire.exceptions.ConfireException
Base class for configuration exceptions.

exception confire.exceptions.ConfireWarning
Base class for configuration warnings.

exception confire.exceptions.ImproperlyConfigured
The user did not properly set a configuration value.

14 Chapter 4. Next Topics

Confire Documentation, Release 0.2.0

4.4.4 Examples

This file is an example file that you might put into your code base to have a configuration library at your fingertips!

class confire.example.DatabaseConfiguration
This object contains the default connections to a Postgres Database.

class confire.example.ExampleConfiguration
This object contains an example configuration.

debug: allow debug checking testing: are we in testing mode?

4.5 Changelog

The release versions that are sent to the Python package index are also tagged in Github. You can see the tags through
the Github web application and download the tarball of the version you’d like. Additionally PyPI will host the various
releases of confire.

The versioning uses a three part version system, “a.b.c” - “a” represents a major release that may not be backwards
compatible. “b” is incremented on minor releases that may contain extra features, but are backwards compatible. “c”
releases are bugfixes or other micro changes that developers should feel free to immediately update to.

4.5.1 Contributors

I’d like to personally thank the following people for contributing to confire and making it a success!

• @tyrannosaurus

• @murphsp1

• @keshavmagge

• @ojedatony1616

4.5.2 Versions

The following lists the various versions of confire and important details about them.

v0.2.0

• tag: v0.2.0

• deployment: July 31, 2014

• commit: (latest)

This release added some new features including support for environmental variables as settings defaults, Configura-
tionMissing Warnings and ImproperlyConfigured errors that you can raise in your own code to warn developers about
the state of configuration.

This release also greatly increased the amount of available documentation for Confire.

4.5. Changelog 15

https://github.com/tyrannosaurus
https://github.com/murphsp1
https://github.com/keshavmagge
https://github.com/ojedatony1616

Confire Documentation, Release 0.2.0

v0.1.1

• tag: v0.1.1

• deployment: July 24, 2014

• commit: bdc0488

Added Python 3.3 support thanks to @tyrannosaurus who contributed to the changes that would ensure this support
for the future. I also added Python 3.3 travis testing and some other minor changes.

v0.1.0

• tag: v0.1.0

• deployment: July 20, 2014

• comit: 213aa5e

Initial deployment of the confire library.

16 Chapter 4. Next Topics

https://github.com/tyrannosaurus

CHAPTER 5

About

There are many configuration packages available on PyPI - it seems that everyone has a different way of doing it.
However, this is my prefered way, and I found that after I copy and pasted this code into more than 3 projects that it
was time to add it as a dependency via PyPI. The configuration builds on what I’ve learned/done in configuring Scapy,
elasticsearch, and Django - and builds on these principles:

1. Configuration should not be Python (sorry Django). It’s too easy to screw stuff up, and anyway, you don’t want
to deal with importing a settings file from /etc!

2. Configuration should be on a per-system basis. This means that there should be an /etc/app.yaml con-
figuration file as well as a $HOME/.app.yaml configuration file that overwrites the system defaults for a
particular user. For development purposes there should also be a $(pwd)/app.yaml file so that you don’t
have to sprinkle things throughout the system if not needed.

3. Developers should be able to have reasonable defaults already written in code if no YAML file has been provided.
These defaults should be added in an API like way that is class based and modularized.

4. Accessing settings from the code should be easy.

So there you have it, with these things in mind I wrote confire and I hope you enjoy it!

5.1 Contributing

Confire is open source, and I would be happy to have you contribute! You can contribute in the following ways:

1. Create a pull request in Github: https://github.com/bbengfort/confire

2. Add issues or bugs on the bugtracker: https://github.com/bbengfort/confire/issues

3. Checkout the current dev board on waffle.io: https://waffle.io/bbengfort/confire

You can contact me on Twitter if needed: @bbengfort

5.2 Name Origin

I like cooking, and the thought of preparation in French culinary language appealed to me. The way I got here was to
simply change the “g” in config to a “t”. A definition lookup and boom, a name!

17

https://github.com/bbengfort/confire
https://github.com/bbengfort/confire/issues
https://waffle.io/bbengfort/confire
https://twitter.com/bbengfort

Confire Documentation, Release 0.2.0

Fig. 5.1: French Chefs preparing Confit

5.3 Indices and tables

• genindex

• modindex

• search

18 Chapter 5. About

Python Module Index

c
confire, 13
confire.config, 13
confire.example, 15
confire.exceptions, 14

19

Confire Documentation, Release 0.2.0

20 Python Module Index

Index

C
Configuration (class in confire.config), 13
ConfigurationMissing, 14
configure() (confire.config.Configuration method), 14
confire (module), 13
confire.config (module), 13
confire.example (module), 15
confire.exceptions (module), 14
ConfireException, 14
ConfireWarning, 14

D
DatabaseConfiguration (class in confire.example), 15

E
environ_setting() (in module confire.config), 14
ExampleConfiguration (class in confire.example), 15

G
get() (confire.config.Configuration method), 14
get_version() (in module confire), 13

I
ImproperlyConfigured, 14

L
load() (confire.config.Configuration class method), 14

O
options() (confire.config.Configuration method), 14

21

	Features
	Setup
	Example Usage
	Next Topics
	About
	Python Module Index

