

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Confire 0.2.0 documentation

Confire

Confire is a simple but powerful configuration scheme that builds on the configuration parsers of Scapy, elasticsearch, Django and others. The basic scheme is to have a configuration search path that looks for YAML files in standard locations. The search path is hierarchical (meaning that system configurations are overloaded by user configurations, etc). These YAML files are then added to a default, class-based configuration management scheme that allows for easy development.

Features

	Configuration files in YAML

	Hierarchical configuration search

	Class based application defaults

	Settings pulled in from the environment

Setup

The easiest and usual way to install confire is to use pip:

pip install confire

To install the package from source, download the latests package tarball, unzip in a temporary directory and run the following command:

python setup.py install

As always, I highly recommend the use of a virtual environment to better manage the software dependencies for your particular code base.

Example Usage

Create a file called “myapp.yaml” and place it in one of the following places:

	/etc/myapp.yaml

	$HOME/.myapp.yaml

	conf/myapp.yaml

Create some configuration values inside the file like so:

Set application environment
debug: True
testing: False

A simple database configuration
database:
 name: mydb
 host: localhost
 port: 5432
 user: postgres

In your code, create a file called “config.py” and add the following:

import os
from confire import Configuration
from confire import environ_setting

class DatabaseConfiguration(Configuration):

 host = "localhost"
 port = 5432
 name = "mydb"
 user = "postgres"
 password = environ_setting("DATABASE_PASSWORD", required=False)

class MyAppConfiguration(Configuration):

 CONF_PATHS = [
 '/etc/myapp.yaml',
 os.path.expanduser('~/.myapp.yaml'),
 os.path.abspath('conf/myapp.yaml')
]

 debug = False
 testing = True
 database = DatabaseConfiguration()

settings = MyAppConfiguration.load()

Now, everywhere in your code that you would like to access these settings values, simply use as follows:

from config import settings

debug = settings.get('DEBUG') or settings['DEBUG']

Voila! A complete configuration system for your application!

Next Topics

Here are a list of topics for more detail about how to use confire in your Python applications.

	Configuring Apps with Confire

	Environment Variables

	Nested Configurations

	Class Documentation

	Changelog

About

There are many configuration packages available on PyPI - it seems that everyone has a different way of doing it. However, this is my prefered way, and I found that after I copy and pasted this code into more than 3 projects that it was time to add it as a dependency via PyPI. The configuration builds on what I’ve learned/done in configuring Scapy, elasticsearch, and Django - and builds on these principles:

	Configuration should not be Python (sorry Django). It’s too easy to screw stuff up, and anyway, you don’t want to deal with importing a settings file from /etc!

	Configuration should be on a per-system basis. This means that there should be an /etc/app.yaml configuration file as well as a $HOME/.app.yaml configuration file that overwrites the system defaults for a particular user. For development purposes there should also be a $(pwd)/app.yaml file so that you don’t have to sprinkle things throughout the system if not needed.

	Developers should be able to have reasonable defaults already written in code if no YAML file has been provided. These defaults should be added in an API like way that is class based and modularized.

	Accessing settings from the code should be easy.

So there you have it, with these things in mind I wrote confire and I hope you enjoy it!

Contributing

Confire is open source, and I would be happy to have you contribute! You can contribute in the following ways:

	Create a pull request in Github: https://github.com/bbengfort/confire

	Add issues or bugs on the bugtracker: https://github.com/bbengfort/confire/issues

	Checkout the current dev board on waffle.io: https://waffle.io/bbengfort/confire

You can contact me on Twitter if needed: @bbengfort [https://twitter.com/bbengfort]

Name Origin

[image: French Chefs preparing Confit]
French Chefs preparing Confit

con fit

/kôNˈfē/

noun duck or other meat cooked slowly in its own fat.

Origin

[French] confire: to prepare

 Configuring Apps with Confire

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Confire 0.2.0 documentation

Configuring Apps with Confire

Let’s say that you’ve just started a new Python project - you know that
this project is going to need access to a Database, possibly require an
API key and API Secret, and it will definitely need some sort of debug mode
so that developers can figure out what’s going on in production. These
types of variables shouldn’t be hardcoded into your application, you’ll
want some kind of configuration management system in your app.

So what are your options? Python has a native configuration parser that
handles .ini files similar to what you’d see on Windows machines - it’s
called configparser, and while it works well (and even has support for
JSON files) - it is extremely basic. As a developer, you not only have to
deal with the .ini syntax, but you also have to look for the file and load
it into the parser. While the parser does handle type conversion, it has
no quick ability to add reasonable defaults. Basically, your configuration
ends up being defined by the .ini file - and this is not good, especially
if your users forget to change a particular value or leave one out all
together!

If you look at Django, they have their settings in a Python file, and the
settings are Python code. This is great because now you can use any Python
type as a setting. There are even reasonable defaults and some fancy import
logic helps get the settings where they need to be. The problem is that
you have to import that file, it has to be on your python path - so no
storage of a settings file in /etc or any other reasonable place. It also
means that developers have to configure Django- not just users of the
app.

So we want the following things in our configuration:

	Reasonable lookup locations for config files

	Configuration type parsing from a text file

	An API that supports reasonable defaults and in-code usage

	A text based configuration that is for users not developers

This is where confire comes in. Confire uses YAML as the configuration
language of choice. This is a markup format that has rich types like JSON,
but is also very readable. Applications like Elasticsearch, Ruby on Rails,
Travis-CI and others make use of YAML, so it’s probably already familiar
to you.

Confire has a hierarchical lookup system that means it looks in the system
configuration (/etc in *nix systems), then in a user specific place,
then in a local directory. At each level, the configuration overrides the
defaults from the other levels. Configurations are then supplied to the
developer in a friendly, Django-like way.

Project Setup

In your projects folder, create your app folder, let’s call it “myapp”.
Then create the Python project skeleton as you would normally do, but also
include a configuration directory, “conf”.

$ mkdir myapp
$ cd myapp
$ mkdirs bin tests conf docs fixtures myapp
$ touch tests/__init__.py
$ touch myapp/__init__.py
$ touch setup.py
$ cd docs
$ sphinx-quickstart
...
$ cd ..

Hopefull this is very familiar to those who develop on Linux or Mac and
set up Python projects regularly. Now, assuming you’re using Git as well
as virtualenv and virtualenv wrapper - let’s get our repository and env
going:

$ git init
$ mkvirtualenv -a $(pwd) myapp
(myapp)$ pip install confire
(myapp)$ pip install nose
(myapp)$ pip freeze > requirements.txt

Perfect! You’re now ready to get developing your Python app. Let’s start
by getting our configuration going. Create a file called myapp.yaml in
the conf directory. It may be helpful to add this file to your
.gitignore so that you don’t accidentally commit a private variable
publically. Also create a file called config.py in your myapp
module.

Inside the myapp.yaml file place the following, very simple code.

debug: false
testing: false

And then inside your config.py, place the following code.

import os
from confire import Configuration

class MyAppConfiguration(Configuration):

 CONF_PATHS = [
 "/etc/myapp.yaml", # System configuration
 os.path.expandvars("$HOME/.myapp.yaml"), # User specific configuration
 os.path.abspath("conf/myapp.yaml"), # Development configuration
]

 debug = True
 testing = True

Load settings immediately for import
settings = MyAppConfiguration.load()

if __name__ == "__main__":
 print settings

That’s it, you now have a complete configuration system for your app! Let’s
walk through this code. Confire provides a class-based configuration API,
meaning that you simply create configuration classes and then defeine your
defaults on them at the class level (kind of like you might use Django
class-based views). Configuration classes must all extend the
confire.Configuration base class.

Note

All configurations should be lowercase properties!
Configurations are case insensitive, but to achieve this,
the __getitem__ method lowercases all accessors!

The CONF_PATHS class variable tells the configuration where to look
for YAML files to load. In this case, we specify three lookups that happen
in the order they’re specified - first the system, then the user directory,
then the local directory for development. You’ll notice that if the config
file is missing, no exceptions are raised.

Using Configurations in Code

The loaded settings immediately for import means that elsewhere in your
code, all you have to do is use the following to get access to your config:

from myapp.config import settings

if settings.get("DEBUG"):
 ...
else:
 ...

Because your API has already specified reasonable defaults, you don’t have
to worry about configurations being missing or unavailable!

A couple notes on using the settings in your code:

	The settings are not case sensitive, DEBUG is the same as debug.
However, all properties should be stored as lowercase in the
configuration subclass.

	You can access settings like so: settings["mysetting"], however this
will raise an exception if the setting is not available (something that
really shouldn’t happen).

	You can also access the settings through the get method:
settings.get("mysetting", "foo"), which will not raise an exception
on a missing setting, but instead return the supplied default or None.

	You can also access the settings using a dot accessor method:
settings.mysetting, which fetches the properties off the class.

	Settings can be modified at runtime, but this is not recommended.

As you continue to develop, you can add settings to your config.py as
well as your myapp.yaml, your app development is now much smoother!

Environment Variables

Sometimes you don’t want your configurations to reside inside of a YAML
file, saved on disk, usually when you have a secret key or a database
password. Other times you don’t have access to your server’s disk, but
can add ENVIRONMENTAL VARIABLES as with a hosting service like Heroku.

Confire makes it easy to specify variables that you expect to be in the
environment, using the environ_setting function, which you can import
from the main module.

from confire import Configuration, environ_setting

class MyConfiguration(Configuration):

 supersecret = environ_setting("SUPER_SECRET", None, required=True)

The function expects as a first argument, the name of the environment
variable, usually an all caps, underscore separated name. You can also
give a default value (in case no variable exists in the environment) as
the second argument.

When the environment is initialized (not loaded) it will immediately look
in the environment for the setting and store it as the default. Any
settings that are in the YAML search paths will override the environment
variable, so make sure that you leave ENV_VARS out of the YAML configs!

The behavior of the function depends on how it’s called, in terms of using
the default and fetching from the environment:

	If it is required and the default is None, raise ImproperlyConfigured

	If it is requried and a default exists, return default

	If it is not required and default is None, return None

	If it is not required and default exists, return default

Environmental variables are usually required, hence the exception.

Note also that you can use confire exceptions and warnings in your own
code, by importing the ImproperlyConfigured and MissingConfiguration
exception and warning.

Nested Configurations

Configurations are nestable in order to ensure that developers can create
easily modular configurations, for example database configuations for a
staging and production database or per-app settings. Nested configurations
will also be loaded from a single YAML file that expects a similar nesting
structure, and the configurations are loaded in a depth-first manner.

To create a nested configuration, you need a main configuration object
that supports the top-level configuration. For each nested configuration,
you simply create new Configuration subclasses and then add them as
settings to main configuration class.

Here is the example for two different databases:

import confire

class DatabaseConfiguration(confire.Configuration):

 name = None
 host = "localhost"
 port = 5432
 user = None
 pass = None

class MainConfiguration(confire.Configuration):

 staging = DatabaseConfiguration()
 production = DatabaseConfiguration()

settings = MainConfiguration.load()

In your YAML file, you can configure each database configuration for its
specific environment:

staging:
 name: "myapp-staging"
 host: "localhost"
 port: 5432
 user: "test-user"
 pass: "password"
production:
 name: "myapp-production"
 host: "54.21.35.141"
 port: 5432
 user: "user"
 pass: "password"

Access to the configuration is as follows:

from myapp.config import settings

print settings.staging.host
print settings.production.host

Configurations can be nested to any depth, but it is recommended to keep
them fairly shallow, to avoid deep accessor chains.

 Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

 Class Documentation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Confire 0.2.0 documentation

Class Documentation

This page documents the contents of the library.

Confire Module

A simple app configuration scheme using YAML and class based defaults.

	
confire.get_version(short=False)[source]

	Prints the version.

Config Module

Confire class for specifying Confire specific optional items via a YAML
configuration file format. The main configuration class provides utilities
for loading the configuration from disk and iterating across all the
settings. Subclasses of the Configuration specify defaults that can be
updated via the configuration files.

General usage:

from confire.conf import settings
mysetting = settings.get(‘mysetting’, default)

You can also get settings via a dictionary like access:

mysetting = settings[‘mysetting’]

However, this will raise an exception if the setting is not found.

Note: Keys are CASE insensitive

Note: Settings can be modified directly by settings.mysetting = newsetting
however, this is not recommended, and settings should be fetched via the
dictionary-like access.

	
class confire.config.Configuration[source]

	Base configuration class specifies how configurations should be
handled and provides helper methods for iterating through options and
configuring the base class.

Subclasses should provide defaults for the various configurations as
directly set class level properties. Note, however, that ANY directive
set in a configuration file (whether or not it has a default) will be
added to the configuration.

Example:

class MyConfig(Configuration):

mysetting = True
logpath = “/var/log/myapp.log”
appname = “MyApp”

The configuration is then loaded via the classmethod load:

settings = MyConfig.load()

Access to properties is done two ways:

settings[‘mysetting’]
settings.get(‘mysetting’, True)

Note: None settings are not allowed!

	
configure(conf={})[source]

	Allows updating of the configuration via a dictionary of
configuration terms or a configuration object. Generally speaking,
this method is utilized to configure the object from a JSON or
YAML parsing.

	
get(key, default=None)[source]

	Fetches a key from the configuration without raising a KeyError
exception if the key doesn’t exist in the config, instead it
returns the default (None).

	
classmethod load(klass)[source]

	Insantiates the configuration by attempting to load the
configuration from YAML files specified by the CONF_PATH module
variable. This should be the main entry point for configuration.

	
options()[source]

	Returns an iterable of sorted option names in order to loop
through all the configuration directives specified in the class.

	
confire.config.environ_setting(name, default=None, required=True)[source]

	Fetch setting from the environment. The bahavior of the setting if it
is not in environment is as follows:

	If it is required and the default is None, raise Exception

	If it is requried and a default exists, return default

	If it is not required and default is None, return None

	If it is not required and default exists, return default

Exceptions

Exceptions hierarchy for Confire

	
exception confire.exceptions.ConfigurationMissing[source]

	Warn the user that an optional configuration is missing.

	
exception confire.exceptions.ConfireException[source]

	Base class for configuration exceptions.

	
exception confire.exceptions.ConfireWarning[source]

	Base class for configuration warnings.

	
exception confire.exceptions.ImproperlyConfigured[source]

	The user did not properly set a configuration value.

Examples

This file is an example file that you might put into your code base to
have a configuration library at your fingertips!

	
class confire.example.DatabaseConfiguration[source]

	This object contains the default connections to a Postgres Database.

	
class confire.example.ExampleConfiguration[source]

	This object contains an example configuration.

debug: allow debug checking
testing: are we in testing mode?

 Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

 Changelog

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Confire 0.2.0 documentation

Changelog

The release versions that are sent to the Python package index are also tagged in Github. You can see the tags through the Github web application and download the tarball of the version you’d like. Additionally PyPI will host the various releases of confire.

The versioning uses a three part version system, “a.b.c” - “a” represents a major release that may not be backwards compatible. “b” is incremented on minor releases that may contain extra features, but are backwards compatible. “c” releases are bugfixes or other micro changes that developers should feel free to immediately update to.

Contributors

I’d like to personally thank the following people for contributing to confire and making it a success!

	@tyrannosaurus [https://github.com/tyrannosaurus]

	@murphsp1 [https://github.com/murphsp1]

	@keshavmagge [https://github.com/keshavmagge]

	@ojedatony1616 [https://github.com/ojedatony1616]

Versions

The following lists the various versions of confire and important details about them.

v0.2.0

	tag: v0.2.0

	deployment: July 31, 2014

	commit: (latest)

This release added some new features including support for environmental variables as settings defaults, ConfigurationMissing Warnings and ImproperlyConfigured errors that you can raise in your own code to warn developers about the state of configuration.

This release also greatly increased the amount of available documentation for Confire.

v0.1.1

	tag: v0.1.1

	deployment: July 24, 2014

	commit: bdc0488

Added Python 3.3 support thanks to @tyrannosaurus [https://github.com/tyrannosaurus] who contributed to the changes that would ensure this support for the future. I also added Python 3.3 travis testing and some other minor changes.

v0.1.0

	tag: v0.1.0

	deployment: July 20, 2014

	comit: 213aa5e

Initial deployment of the confire library.

 Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Confire 0.2.0 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 confire	

 	
 	
 confire.config	

 	
 	
 confire.example	

 	
 	
 confire.exceptions	

 Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	
 modules |

 	Confire 0.2.0 documentation

Index

 C
 | D
 | E
 | G
 | I
 | L
 | O

C

 	

 	Configuration (class in confire.config)

 	ConfigurationMissing

 	configure() (confire.config.Configuration method)

 	confire (module)

 	confire.config (module)

 	

 	confire.example (module)

 	confire.exceptions (module)

 	ConfireException

 	ConfireWarning

D

 	

 	DatabaseConfiguration (class in confire.example)

E

 	

 	environ_setting() (in module confire.config)

 	

 	ExampleConfiguration (class in confire.example)

G

 	

 	get() (confire.config.Configuration method)

 	

 	get_version() (in module confire)

I

 	

 	ImproperlyConfigured

L

 	

 	load() (confire.config.Configuration class method)

O

 	

 	options() (confire.config.Configuration method)

 Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Confire 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

_modules/confire/config.html

 Navigation

 		
 index

 		
 modules |

 		Confire 0.2.0 documentation »

 		Module code »

 		confire »

 Source code for confire.config

confire.conf
A simple configuration module for Confire
#
Author: Benjamin Bengfort <ben@cobrain.com>
Created: Tue May 20 22:19:11 2014 -0400
#
Copyright (C) 2013 Cobrain Company
For license information, see LICENSE.txt
#
ID: conf.py [] ben@cobrain.com $

"""
Confire class for specifying Confire specific optional items via a YAML
configuration file format. The main configuration class provides utilities
for loading the configuration from disk and iterating across all the
settings. Subclasses of the Configuration specify defaults that can be
updated via the configuration files.

General usage:

 from confire.conf import settings
 mysetting = settings.get('mysetting', default)

You can also get settings via a dictionary like access:

 mysetting = settings['mysetting']

However, this will raise an exception if the setting is not found.

Note: Keys are CASE insensitive

Note: Settings can be modified directly by settings.mysetting = newsetting
however, this is not recommended, and settings should be fetched via the
dictionary-like access.
"""

##
Imports
##

import os
import yaml
import warnings

from copy import deepcopy
from .exceptions import ImproperlyConfigured, ConfigurationMissing

##
Environment helper function
##

[docs]def environ_setting(name, default=None, required=True):
 """
 Fetch setting from the environment. The bahavior of the setting if it
 is not in environment is as follows:

 1. If it is required and the default is None, raise Exception
 2. If it is requried and a default exists, return default
 3. If it is not required and default is None, return None
 4. If it is not required and default exists, return default
 """
 if name not in os.environ and default is None:
 message = "The {0} ENVVAR is not set.".format(name)
 if required:
 raise ImproperlyConfigured(message)
 else:
 warnings.warn(ConfigurationMissing(message))

 return os.environ.get(name, default)

##
Configuration Base Class
##

[docs]class Configuration(object):
 """
 Base configuration class specifies how configurations should be
 handled and provides helper methods for iterating through options and
 configuring the base class.

 Subclasses should provide defaults for the various configurations as
 directly set class level properties. Note, however, that ANY directive
 set in a configuration file (whether or not it has a default) will be
 added to the configuration.

 Example:

 class MyConfig(Configuration):

 mysetting = True
 logpath = "/var/log/myapp.log"
 appname = "MyApp"

 The configuration is then loaded via the classmethod `load`:

 settings = MyConfig.load()

 Access to properties is done two ways:

 settings['mysetting']
 settings.get('mysetting', True)

 Note: None settings are not allowed!
 """

 CONF_PATHS = [
 '/etc/confire.yaml', # The global configuration
 os.path.expanduser('~/.confire.yaml'), # User specific configuration
 os.path.abspath('conf/confire.yaml') # Local directory configuration
]

 @classmethod
[docs] def load(klass):
 """
 Insantiates the configuration by attempting to load the
 configuration from YAML files specified by the CONF_PATH module
 variable. This should be the main entry point for configuration.
 """
 config = klass()
 for path in klass.CONF_PATHS:
 if os.path.exists(path):
 with open(path, 'r') as conf:
 config.configure(yaml.load(conf))
 return config

[docs] def configure(self, conf={}):
 """
 Allows updating of the configuration via a dictionary of
 configuration terms or a configuration object. Generally speaking,
 this method is utilized to configure the object from a JSON or
 YAML parsing.
 """
 if not conf: return
 if isinstance(conf, Configuration):
 conf = dict(conf.options())
 for key, value in conf.items():
 opt = self.get(key, None)
 if isinstance(opt, Configuration):
 opt.configure(value)
 else:
 self.__dict__[key] = value

[docs] def options(self):
 """
 Returns an iterable of sorted option names in order to loop
 through all the configuration directives specified in the class.
 """
 keys = self.__class__.__dict__.copy()
 keys.update(self.__dict__)
 keys = sorted(keys.keys())

 for opt in keys:
 val = self.get(opt)
 if val is not None:
 yield opt, val

[docs] def get(self, key, default=None):
 """
 Fetches a key from the configuration without raising a KeyError
 exception if the key doesn't exist in the config, instead it
 returns the default (None).
 """
 try:
 return self[key]
 except KeyError:
 return default

 def __getitem__(self, key):
 """
 Main configuration access method. Performs a case insensitive
 lookup of the key on the class, filtering methods and pseudo
 private properties. Raises KeyError if not found. Note, this makes
 all properties that are uppercase invisible to the options.
 """
 key = key.lower()
 if hasattr(self, key):
 attr = getattr(self, key)
 if not callable(attr) and not key.startswith('_'):
 return attr
 raise KeyError("%s has no configuration '%s'" % (self.__class__.__name__, key))

 def __repr__(self):
 return str(self)

 def __str__(self):
 s = ""
 for opt, val in self.options():
 r = repr(val)
 r = " ".join(r.split())
 wlen = 76-max(len(opt),10)
 if len(r) > wlen:
 r = r[:wlen-3]+"..."
 s += "%-10s = %s\n" % (opt, r)
 return s[:-1]

 © Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

_modules/confire/example.html

 Navigation

 		
 index

 		
 modules |

 		Confire 0.2.0 documentation »

 		Module code »

 		confire »

 Source code for confire.example

confire.example
This is an example configuration file
#
Author: Benjamin Bengfort <benjamin@bengfort.com>
Created: Sun Jul 20 14:56:39 2014 -0400
#
Copyright (C) 2014 Bengfort.com
For license information, see LICENSE.txt
#
ID: example.py [] benjamin@bengfort.com $

"""
This file is an example file that you might put into your code base to
have a configuration library at your fingertips!
"""

##
Imports
##

import os
from confire import Configuration

##
Database Configuration
##

[docs]class DatabaseConfiguration(Configuration):
 """
 This object contains the default connections to a Postgres Database.
 """

 host = "localhost"
 port = 5432
 database = "app"
 user = "postgres"
 password = os.environ.get("DATABASE_PASSWORD")

##
Confire Configuration Defaults
##

[docs]class ExampleConfiguration(Configuration):
 """
 This object contains an example configuration.

 debug: allow debug checking
 testing: are we in testing mode?
 """

 CONF_PATHS = [
 '/etc/myapp.yaml', # The global configuration
 os.path.expanduser('~/.myapp.yaml'), # User specific configuration
 os.path.abspath('conf/myapp.yaml'), # Local directory configuration
 os.path.abspath('conf/example-config.yaml')
]

 debug = True
 testing = False
 database = DatabaseConfiguration()

##
Import this loaded Configuration
##

settings = ExampleConfiguration.load()

if __name__ == '__main__':
 print settings

 © Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

_modules/confire.html

 Navigation

 		
 index

 		
 modules |

 		Confire 0.2.0 documentation »

 		Module code »

 Source code for confire

confire
A simple app configuration scheme using YAML and class based defaults.
#
Author: Benjamin Bengfort <benjamin@bengfort.com>
Created: Sun Jul 20 09:44:32 2014 -0400
#
Copyright (C) 2014 Bengfort.com
For license information, see LICENSE.txt
#
ID: __init__.py [] benjamin@bengfort.com $

"""
A simple app configuration scheme using YAML and class based defaults.
"""

##
Imports
##

from .config import Configuration, environ_setting
from .exceptions import ImproperlyConfigured

##
Module Info
##

__version_info__ = {
 'major': 0,
 'minor': 2,
 'micro': 1,
 'releaselevel': 'final',
 'serial': 0,
}

[docs]def get_version(short=False):
 """
 Prints the version.
 """
 assert __version_info__['releaselevel'] in ('alpha', 'beta', 'final')
 vers = ["%(major)i.%(minor)i" % __version_info__,]
 if __version_info__['micro']:
 vers.append(".%(micro)i" % __version_info__)
 if __version_info__['releaselevel'] != 'final' and not short:
 vers.append('%s%i' % (__version_info__['releaselevel'][0],
 __version_info__['serial']))
 return ''.join(vers)

##
Package Version
##

__version__ = get_version()

 © Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Confire 0.2.0 documentation »

 All modules for which code is available

		confire

		confire.config

		confire.example

		confire.exceptions

 © Copyright 2014, Benjamin Bengfort.
 Created using Sphinx 1.3.5.

_modules/confire/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		Confire 0.2.0 documentation »

 		Module code »

 		confire »

 Source code for confire.exceptions

confire.exceptions
Exceptions hierarchy for Confire
#
Author: Benjamin Bengfort <benjamin@bengfort.com>
Created: Mon Jul 21 11:02:09 20